Greedy signal recovery and uncertainty principles

نویسندگان

  • Deanna Needell
  • Roman Vershynin
چکیده

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of the L1-minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle. In the case of inaccurate measurements and approximately sparse signals, the noise level of the recovery is proportional to √ log n‖e‖2 where e is the error vector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal recovery from incomplete and inaccurate measurements via ROMP

We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...

متن کامل

Signal Recovery from Inaccurate and Incomplete Measurements via Regularized Orthogonal Matching Pursuit

We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...

متن کامل

Robust Sparse Signal Recovery for Compressed Sensing with Sampling and Dictionary Uncertainties

Compressed sensing (CS) shows that a signal having a sparse or compressible representation can be recovered from a small set of linear measurements. In classical CS theory, the sampling matrix and dictionary are assumed be known exactly in advance. However, uncertainties exist due to sampling distortion, finite grids of the parameter space of dictionary, etc. In this paper, we take a generalize...

متن کامل

Uncertainty principles in Banach spaces and signal recovery

A very general uncertainty principle is given for operators on Banach spaces. Many consequences are derived, including uncertainty principles for Bessel sequences in Hilbert spaces and for integral operators between measure spaces. In particular it implies an uncertainty principle for Lp(G), 1 ≤ p ≤ ∞, for a locally compact Abelian group G, concerning simultaneous approximation of f ∈ Lp(G) by ...

متن کامل

Noise Resilient Recovery Algorithm for Compressed Sensing

In this article, we discuss a novel greedy algorithm for the recovery of compressive sampled signals under noisy conditions. Most of the greedy recovery algorithms proposed in the literature require sparsity of the signal to be known or they estimate sparsity, for a known representation basis, from the number of measurements. These algorithms recover signals when noise level is significantly lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008